清华大学:研究用于异物识别的宽量程摩擦电刚度传感器

发布日期:2024-05-08 11:38:36   来源 : 传感器专家网    作者 :传感器专家网    浏览量 :260
传感器专家网 传感器专家网 发布日期:2024-05-08 11:38:36  
260

      【清华大学:研究用于异物识别的宽量程摩擦电刚度传感器】

       随着人工智能的发展,刚度传感器在各个领域得到了广泛应用,其与机器人的集成进行自动触诊得到了广泛的关注。本研究提出了一种基于摩擦纳米发电机的宽量程自供电刚度传感器(Stiff-TENG),用于软物体中的异物检测。Stiff-TENG采用了堆叠结构,其组成包括ITO、弹性海绵、带有导电油墨电极的FEP膜,以及带有屏蔽层的亚克力板。通过解耦信号中包含的力信息和总位移信息,Stiff-TENG能实现对物体刚度的快速检测。

       首先分析了在4 mm的总位移之内,TENG对不同刚度物体的输出性能和特性。其次,本文中Stiff-TENG被成功用于非均质刚度结构的检测,并进一步被用于软物体中异物的有效检测,识别准确率达到99.7%。此外,Stiff-TENG的适应性非常适合检测人体内发生刚度变化的病理组织,从而探明局部病理情况。这项研究突显了TENG的创新应用,并展示了其在健康医疗领域,特别是触诊方面的潜力。

       亮点

       1. 提出了采用弹性海绵和屏蔽层的宽范围低成本摩擦电传感器系统,提出通过提取信号特征,快速识别物体的刚度的信号处理方法,降低对计算资源需求。

       2. 所提出的传感器系统能够识别物体的多层刚度结构,有效识别软物体中不同的包含物,准确率达到99.7%。

       内容简介

       随着人工智能的发展,刚度传感器在各个领域得到了广泛应用,其与机器人的集成进行自动触诊得到了广泛的关注。清华大学深圳国际研究生院的丁文伯副教授课题组提出了一种基于摩擦纳米发电机的宽量程自供电刚度传感器(Stiff-TENG),用于软物体中的异物检测。Stiff-TENG采用了堆叠结构,其组成包括ITO、弹性海绵、带有导电油墨电极的FEP膜,以及带有屏蔽层的亚克力板。通过解耦信号中包含的力信息和总位移信息,Stiff-TENG能实现对物体刚度的快速检测。本文首先分析了在4 mm的总位移之内,TENG对不同刚度物体的输出性能和特性。其次,本文中Stiff-TENG被成功用于非均质刚度结构的检测,并进一步被用于软物体中异物的有效检测,识别准确率达到99.7%。此外,Stiff-TENG的适应性非常适合检测人体内发生刚度变化的病理组织,从而探明局部病理情况。这项研究突显了TENG的创新应用,并展示了其在健康医疗领域,特别是触诊方面的潜力。

       图文导读

       I Stiff-TENG的结构和应用示意图

       Stiff-TENG的结构和应用示意图如图1所示。图1(a)为基于Stiff-TENG的异物识别应用,当Stiff-TENG接触物体时,机械运动被转化为显示在计算机屏幕上的电信号;图1(b)为所提出的Stiff-TENG的多层结构,其中ITO,FEP用作摩擦层;弹性海绵为其提供足够的相对位移空间,外层亚克力作为保护结构;底部屏蔽膜,连接到地线防止电荷干扰测量;图1(c)为通过提取生成的信号中的力和位移信息来识别物体刚度的方法;图1(d)为软物体中包裹的异物识别处理的系统流程,实现了对异物的形状、大小、数量的检测。

图1. Stiff-TENG的结构和应用示意图。(a)为基于Stiff-TENG的异物识别应用的示意图;(b)为所提出的Stiff-TENG的分层图解;(c)为通过提取生成的信号中的力和位移信息来识别物体刚度;(d)为内部包含异物识别的数据处理系统级流程图。

       II  Stiff-TENG的工作原理及表征

       Stiff-TENG的工作原理和表征如图2所示。图2(a)为Stiff-TENG的工作原理。FEP和ITO电负性不同,在传感器的压缩和恢复过程会产生电流。两层薄膜之间的弹性海绵为薄膜提供了支撑结构;图2(b)为Stiff-TENG在不同压缩程度下的COMSOL仿真,仿真结果说明传感器在更大的形变程度下,会产生更大的电压输出;图2(c)为Stiff-TENG按压九种不同刚度物体所测得的电压信号输出;图2(d)为Stiff-TENG与不同刚度的立方体之间相互作用的机械模型。推导可得,当Stiff-TENG在相同的总位移下按压软/硬物体时,更硬的被按压物体会对应更大传感器形变以及更大的电压输出,符合九种不同刚度物体按压产生数据的规律;图(2e-2g)为 Stiff-TENG的开路电压,转移电荷量,短路电流表征。

图2. Stiff-TENG的工作原理和特性表征。(a) Stiff-TENG的工作原理;(b) Stiff-TENG在不同压缩程度下的COMSOL仿真;(c) Stiff-TENG按压九种不同刚度物体所测得的电压信号输出;(d) 当TENG在变化的总位移下按压软/硬物体时,弹性海绵和被压物体的变形;(e) Stiff-TENG的开路电压;(f) Stiff-TENG的转移电荷量;(g) Stiff-TENG的短路电流。

       III  Stiff-TENG对于不同刚度物体的表征及分析

       Stiff-TENG用于刚度识别时的信号解耦方法如图3所示。图3(a)为测得信号的解耦过程,包括对采集信号的峰峰值以及正峰-负峰间隔时间的提取;图3(b)为提取所有采集数据样本的电压峰峰值散点图,结果表明不同物体之间存在特定值的重叠,无法仅通过该特征区分刚度;图3(c)为在不同的已知总位移下按压产生电压与刚度之间的关系,说明在每个特定的位移下可以通过峰峰电压识别刚度,更硬的物体对应较大的峰峰电压;图3(d,e)为时间间隔与位移之间的拟合关系,证明可以通过正峰-负峰间隔时间判断总位移;图3(f)为由峰峰电压和正峰-负峰间隔时间与刚度生成的拟合结果;图3(g)为Stiff-TENG和台式测量仪之间的测量比较;图3(h)为Stiff-TENG性能与其他原理的刚度传感器的性能比较,Stiff-TENG具有低成本、自驱动、大量程、多场景、节省计算资源等优势。

图3. 刚度识别的信号解耦方法。(a) 测得信号的解耦过程;(b) 峰峰电压与不同刚度之间的散点图;(c) 在不同的已知总位移下按压产生电压与刚度之间的关系;(d) 时间间隔与位移之间的拟合关系;(e) 时间间隔与位移之间的拟合关系;(f) 由峰峰电压和时间间隔生成的杨氏模量拟合曲面;(g) Stiff-TENG和台式测量仪之间的测量比较;(h) Stiff-TENG性能与其他原理的刚度传感器的性能比较。

       IV 基于Stiff-TENG的非均质结构物体识别以及异物检测

       基于Stiff-TENG的非均质结构物体识别以及异物检测应用如图4所示。图4(a)为按压不同上部厚度和底部刚度的非均匀结构物体产生的信号,实验证明Stiff-TENG有对于非均质结构物体检测的能力;图4(b)为异物检测示意图,Stiff-TENG可以放置在机械臂的末端使用;图4(c,d)为按压包含不同刚度材料的异物,以及包含不同大小、形状和数量的异物产生的信号;图4(e)为异物信号的处理以及分类方法。信号处理使用了低通滤波,数据增强及归一化,并使用FFT得到数据的频域特征。对数据分类使用了SVM的机器学习方法;图4(f)为异物检测结果对应的混淆矩阵,结果表明我们的Stiff-TENG在异物检测任务中有很好的效果。

图4. 基于Stiff-TENG的非均质结构物体识别以及异物检测应用。(a) 不同上部厚度和底部刚度的非均质结构物体的表征;(b) 异物检测示意图;(c,d) 按压包含不同刚度材料的异物,以及包含不同大小、形状和数量的异物产生的信号;(e) 异物信号的处理以及分类方法;(f) 基于机器学习的异物检测结果对应的混淆矩阵。

       声明:转载此文是出于传递更多信息之目的。若有来源标注错误或侵犯了您的合法权益,请与我们联系,我们将及时更正、删除,谢谢。

联系我们
快速链接
搜索
关注我们
>
>
>
>
>
hithingsiot@163.com
在这里快速搜索,可以更快捷的找到想要的内容并且可以快速的到达对应的位置,找到想要的 。
Copyright © 2023 深圳市海翔物联科技有限公司
深圳市南山区科技中二路19号劲嘉科技大厦11楼1103房
钟先生:13500096375
台先生:15889633683
EHREN亿润公众号
EHREN官方小程序
云计算支持 反馈 枢纽云管理
回到顶部